1. Definições
Vimos na resolução de uma equação do 2º grau que se o discriminante é negativo, ela não admite raízes reais. Por exemplo, a equação
x2 + 9 = 0
não admite raízes reais. Se usarmos os métodos que conhecemos para resolvê-la, obtemos
x2 = -9
x = ±
mas é inaceitável tal resultado para x; os números negativos não têm raiz quadrada.
Para superar tal impossibilidade e poder, então, resolver todas equações do 2º grau, os matemáticos ampliaram o sistema de números, inventando os números complexos.
Primeiro, eles definiram um novo número
i =
Isso conduz a i2 = -1. Um número complexo é então um número da forma a + bi onde a e b são números reais.
Para a equação acima fazemos
x = ±
x = ±
x = ± .
x = ± 3 i
As raízes da equação x2 + 9 = 0 são 3i e - 3i.
Definição Um número complexo é uma expressão da forma a + bi onde a e b são números reais e i2 = -1. No número complexo a + bi, a é a parte real e b é a parte imaginária. |
Exemplos
2 + 5i | parte real 2 | parte imaginária 5 |
i | parte real | parte imaginária |
12i | parte real 0 | parte imaginária 12 |
-9 | parte real -9 | parte imaginária 0 |
Um número como 12i, com parte real 0, chama-se número imaginário puro. Um número real como -9, pode ser considerado como um número complexo com parte imaginária 0.
Igualdade de números complexos
Os números complexos a + bi e c + di são iguais se suas partes reais são iguais e suas partes imaginárias são iguais, isto é:
a + bi = c + di se
Exemplos
2 + 5i =
Se x e y são números reais e x + yi = 7 - 4i, então x = 7 e y = - 4.
Nenhum comentário:
Postar um comentário